Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Cir Bras ; 38: e383823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851783

RESUMO

PURPOSE: To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. METHODS: Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the animals do not receive any type of treatment; and biomaterial group (BG), in which the animals received the HA/PLGA/BLEED scaffold. Critical bone injury was induced in the medial region of the skull calotte with the aid of a trephine drill 8 mm in diameter. The biomaterial was implanted in the form of 1.5-mm thick scaffolds. Serum and calotte were collected at one, three and seven days. RESULTS: Biomaterial had a significant effect on the morphological structure of the bone, accelerating osteoblast activation within three days, without causing exacerbated systemic inflammation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that BG induced upregulation of osteogenic genes such as runt-related transcription factor 2, and stimulated genes of inflammatory pathways such as tumor necrosis factor-α, on the first day without overexpressing genes related to bone matrix degradation, such as tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-9. CONCLUSIONS: The HA/PLGA/BLEED® association can be used as a bone graft to aid bone repair, as it is capable of modulating expression of important genes at this stage of the repair process.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Ratos , Animais , Masculino , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química , Ratos Wistar , Osteogênese , Durapatita/química , Regeneração Óssea
2.
Acta cir. bras ; 38: e383823, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1513539

RESUMO

ABSTRACT Purpose: To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. Methods: Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the animals do not receive any type of treatment; and biomaterial group (BG), in which the animals received the HA/PLGA/BLEED scaffold. Critical bone injury was induced in the medial region of the skull calotte with the aid of a trephine drill 8 mm in diameter. The biomaterial was implanted in the form of 1.5-mm thick scaffolds. Serum and calotte were collected at one, three and seven days. Results: Biomaterial had a significant effect on the morphological structure of the bone, accelerating osteoblast activation within three days, without causing exacerbated systemic inflammation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that BG induced upregulation of osteogenic genes such as runt-related transcription factor 2, and stimulated genes of inflammatory pathways such as tumor necrosis factor-α, on the first day without overexpressing genes related to bone matrix degradation, such as tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-9. Conclusions: The HA/PLGA/BLEED® association can be used as a bone graft to aid bone repair, as it is capable of modulating expression of important genes at this stage of the repair process.

3.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005734

RESUMO

Aspergillus fumigatus is a major cause of human disease. The survival of this fungus is dependent on the cell wall organization and function of its components. The cell wall integrity pathway (CWIP) is the primary signaling cascade that controls de novo synthesis of the cell wall in fungi. Abundant conidiation is a hallmark in A. fumigatus, and uptake of conidia by a susceptible host is usually the initial event in infection. The formation of conidia is mediated by the development of fungus-specific specialized structures, conidiophores, which are accompanied by cell wall remodeling. The molecular regulation of these changes in cell wall composition required for the rise of conidiophore from the solid surface and to disperse the conidia into the air is currently unknown. Here, we investigated the role of CWIP in conidiation. We show that CWIP pkcAG579R, ΔmpkA, and ΔrlmA mutants displayed reduced conidiation during synchronized asexual differentiation. The transcription factor RlmA directly regulated the expression of regulators of conidiation, including flbB, flbC, brlA, abaA, and rasB, as well as genes involved in cell wall synthesis and remodeling, and this affected the chitin content in aerial hyphae. Phosphorylation of RlmA and MpkA was increased during asexual differentiation. We also observed that MpkA physically associated with the proteins FlbB, FlbC, BrlA, and RasB during this process, suggesting another level of cross talk between the CWIP and asexual development pathways. In summary, our results support the conclusion that one function of the CWIP is the regulation of asexual development in filamentous fungi.IMPORTANCE A remarkable feature of the human pathogen Aspergillus fumigatus is its ability to produce impressive amounts of infectious propagules known as conidia. These particles reach immunocompromised patients and may initiate a life-threatening mycosis. The conidiation process in Aspergillus is governed by a sequence of proteins that coordinate the development of conidiophores. This process requires the remodeling of the cell wall so that the conidiophores can rise and withstand the chains of conidia. The events regulating cell wall remodeling during conidiation are currently unknown. Here, we show that the cell wall integrity pathway (CWIP) components RlmA and MpkA directly contribute to the activation of the conidiation cascade by enabling transcription or phosphorylation of critical proteins involved in asexual development. This study points to an essential role for the CWIP during conidiation and provides further insights into the complex regulation of asexual development in filamentous fungi.


Assuntos
Aspergillus fumigatus/fisiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Reprodução Assexuada , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Aspergilose/microbiologia , Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...